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We investigate the first passage timg to a given chemical or Euclidean distance of the first a set of
N>1 independent random walkers all initially placed on a site of a disordered medium. To solve this order-
statistics problem we assume that, for short times, the survival probaltiéyprobability that a single random
walker is not absorbed by a hyperspherical surface during some time intdecalys for disordered media in
the same way as for Euclidean and some class of deterministic fractal lattices. This conjecture is checked by
simulation on the incipient percolation aggregate embedded in two dimensions. Arbitrary momignfsa
expressed in terms of an asymptotic series in powers ofNlAmhich is formally identical to those found for
Euclidean andsome class 9fdeterministic fractal lattices. The agreement of the asymptotic expressions with
simulation results for the two-dimensional percolation aggregate is good when the boundary is defined in terms
of the chemical distance. The agreement worsens slightly when the Euclidean distance is used.
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I. INTRODUCTION site (the origin of a medium start to diffuse at time=0.
Eventually, at timet;y(z) a random walker of this set
Diffusion in disordered media has been an area of intenreaches for the first time a site that is separated from the
sive research during the last two decafieg]. Transport in  origin by the distancez. Next, a second random walker
noncrystalline, disordered materials cannot be explained bgeaches at timé,\ a site at the same distaneefrom the
the classical theories of diffusion since anomalous behaviorsrigin, and so on[19]. Equivalently, we can understand
(relative to what happens in the Euclidean domaire the t; y(2) as the time takefescape time or lifetimeby thejth
rule here. In particular, the mean-square displacement of particle out of a set oN>1 to escape from a “spherical”
random walker?(t)) is no longer proportional to the tinte  region of radiusz centered at the starting site of diffusion.
as occurs in uniform Euclidean systems of any dimensiorOur goal in this paper is to calculate the escape-time mo-
(Fick’s Law), but the more general anomalous diffusion law ments(tpN(z)> whenN>1 random walkers diffuse in dis-
(r?y~2Dt?%dw holds for large timesy being the Euclidean orderedmedlum
distance from the position of the random walket &0, d,, This order-statistic problem was solved for the one-
the anomalous diffusion exponent, abdthe diffusion con- dimensional lattice in Refd.13,14] and for some class of
stant. As the geometrical structure of real disordered media ideterministic fractal substrates in Ref.[14]. For
very complex and varied, it is usually modeled by stochastiad-dimensional Euclidean lattices, the form of the first mo-
fractal lattices. Of these, the incipient percolation aggregatenent of t;y was guessed in Ref15] and checked using
embedded in either two or three dimensions is the mosgimulation results fod=2 andd=3. The full solution of
widely used[1-5]. this problem for Euclidean media and for arbitrgrnand j
Statistical problems related to a single random walkethas been obtained recenfli/]. For all these media, theth
have traditionally been the subject of more intensive researcioment of the time;  spent by thejth random walker in
than those corresponding k> 1 interacting or independent reaching the Euclidean distancevas given in terms of an
random walkerg[6,7]. Of course, problems in which the asymptotic series for largd of the form
walkers interact cannot be analyzed in terms of the single-

walker theory. However, there also exist other multiparticle pdy © (InInN)™
problems that cannot be analyzed in terms of the single- <t N>~(_) (In N)P(l—dw)z 2 Tom————
walker theory even though the walkers are independent. V2D n=0 m=0 (InN)"

These problems have begun to be the target of in-depth stud- (1)
ies during the last decadé8—18]. Particular attention has
been paid to(i) the evaluation of the average number of where the coefficients,,, depend omp,j, and the substrate.
distinct sites visited up to time by N independent random The question we want to answer is whether this is also true
walkers all starting from the same origin in both Euclideanfor disordered media.
and fractal latticed8-12], and (ii) the description of the The prior knowledge of thehort-timeasymptotic expres-
order statistic of the diffusion processes. This is the subjecsion of the survival probability’(z,t), which is defined as
we address in this paper and can be stated as follows. A set #fe probability that a random walker who starts at an origin
N independent random walkers all initially placed at a givensite has not arrived at a spherical boundary of radiunsthe
time interval (0t), was a key that allowed us to find rigor-
ously the full asymptotic approximatiofi) for (t]-p,N> for
*Email address: acedo@unex.es Euclidean and some deterministic fractal mg@@] in Refs.
TEmail address: santos@unex.es [13,14,18. (Here, and henceforth, we use the term “short
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time” or “short-time regime” to mean thatz/(z%(t))¥?  lently the (boundary mortality functionh(z,t)=1-T'(z,1t),
>1,Z%(t)) being the mean-square distarcéraveled by a for short timedi.e., for z/(z?(t))¥?>1] in order to calculate
single random walker in timeé.) However, the use of the the escape-time moments"y). This mortality function is
asymptotic procedures of Ref§13,14,1 for estimating the probability that a given random walker starting at the site
(th) for disorderedmedia is impeded by the fact that the z=0 has been trapped by an absorbing boundary of radius
value of the short-time survival probability is unknown for before timet. In this paper we will consider media for which
these substrates. In spite of this, in Rgf4] it was conjec- this mortality function(averaged over all realizations of the
tured that Eq.(1) is valid for disordered media tof21].  |attice if the lattice is stochastigrows foré=z/tY%ws>1 as

However, Drger and Klaftef18], using a scaling approach, g stretched exponential with power-law corrective terms,
have shown recently that

¢ ¢ h(z,t)=h(§)~A& *exd —c&H{1+h & v+ -},
(tin)=O[¢%(InN) %], 2 3

for ordered and disorderestructures, which differs from Eq. whereA, u,v,h, are characteristic parameters of the lattice.
(1) because, in generatl,#d,,. Hered!=d,,/dny, is the ~ The anomalous diffusion coefficiedf, is replaced byd,, if
chemical diffusion exponent defined by the relatigf)  the Euclidean distance is used=(r) and bydy, if z=¢.
Nconstxtl/d\fv'e(r) being the chemical or topological dis- There are good reasons to propose the functional form of Eq.

tance defined as the length of the shortest path connecti ). To start With,_ this relfation holds fqr Eu<_:|idean lattices.
two sites on a substrate that are separated by the Euclidedii€n. the mortality function was obtained in Ref$4,22
distancer, andd,;, is the fractal dimension of the shortest for some class of deterministic fractals by using a renormal-
d_T12]. Notice that ization procedure that involved only boundaries containing

path on the fractal{€(r))~constxr, h iahb f the origin af ive deci
dnin=21 for Euclidean lattices and for the deterministic frac- the nearest neighbors of the origin after successive decima-
tions, and the result is in agreement with E8).too. In these

tals discussed in Ref14], so that, for these cases, Eq$) AR - -
and(2) agree. Unfortunately, the scaling approach ofdema mediaz=r, '“_1/,2' a.ndv—dw/(dw—l).. (AIthough. the re-
sSults of renormalization cannot be directly applied to any

and Klafter is not precise enough to lead to a fully correct®™ ™ . .
asymptotic expression of the form of E€L). This can be origin and any arbitrary boundary, there are again good rea-
sons to suspect that the functional form is the sd&8j.)

seen, for example, because the asymptotic seriegtfqy) . . -

given by these authors in RdfL8] does not agree with the Also,_a closely re_Iated quantity tm(z,_t)_, the (site) moft?‘"tY

figorous asymptotic series reported in RdfE3,14] for the function ht(r_) _deflned as _the probability that a specific site
has been visited by a single random walker before ttme

one-dimensional lattice. ; . .
s follows Eq. (3) for the two-dimensional percolation aggre-

In this paper we deal with the order statistics of the di ; . .
fusion process in disordered media following the procedur@@t€[12]. Finally, one expects that the mortality function and

previously carried out in Euclidean media3,14,1 and in  the PropagatorP(z,t) decay for £>1 in the same way
(some class ofdeterministic fractal latticef14,16). There- 22,23, and itis known thaPZ(z,t)Zdecays as exp{c¢’) for
fore, our first step must be to propose a short-timeStochastic fractals, whete=dy/(dy,—1) [1-3]. We will de-
asymptotic expression for the survival probability. The func-vote the remaining part of this section to verify thg{,t)
tional form we take coincides with that obtained for Euclid- 2nd h(r,t) behave as conjectured in E(B) for the two-
ean and renormalizable fractal lattices. Next, we apply théimensional percolation aggregate.

asymptotic methods already used for the Euclidean and de-

terministic fractal cases in order to obtain asymptotic expan- A. Mortality function for the two-dimensional percolation
sions for the order-statistics momert$'y). aggregate: Chemical distance

The paper organ!zed is as follows. In Sec. Il, a short'—time We start by estimating the mortality functitri¢,t) when
asymptotic expression for the survival probability for disor- he “circular” absorbing boundary is placed at the chemical
dered media is proposed. We check this conjecture in thgisiancer from the starting site. The numerical evaluation of
two—dmgnsmnal incipient percolation aggregate and, on theyig quantity is performed by the Chapman-Kolmogorov
way, estimate for this case the unknown parameters appeafiethod (also called the exact enumeration metHdg2)).
ing in the proposed relationship. In Sec. Ill we give thethe circular boundary of absorbing traps is simulated by a
asymptotic expressions of the momentsqf for stochastic  get of special sites belonging to the cluster that absorbs all
fractals assuming that the survival probability for the short-yne propanility density that enters them without giving back
time regime is given by the expression proposed in Sec. llgny probability to their neighbors. In the simulation we lo-
These theoretical results are compared with simulation datgyte these boundaries at distanées40 100.160. and per-

for the_two-dimensional_ percolation aggregate. The papefoym three experiments of absorption for=0,1, . . . f;na
ends with some conclusions and remarks. with t,,;,=1000 on every aggregate built, one for each
boundary. The resulting mortality function is averaged over
Il. SHORT-TIME SURVIVAL PROBABILITY 2000 realizations of the percolation aggregate, which are
From now on, we will denote by either the chemical generat_ed by the Leath meth{2i24] A oA
distance( or the Euclidean distangeAs discussed in Sec. | N Fig. 1 we plot Ii=Inh(¢.f)] versus Irg with ¢
we have to know the survival probabilify(z,t), or equiva- =€/t and d{,=2.4. [Hereafter we will put the symbol
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Inf-In h(t,0)]
In[-In h(r,t)]

In§

FIG. 1. Plot of In—In h(¢,t)] versus Ir@for the two-dimensional
incipient percolation cluster. The radii of the absorbing “circular”
boundaries arel =40 (triangleg, ¢=100 (circles, and ¢=160
(squares The line represents the functioh(€,t) =A& “exp
(—c&’) with A=1, u=—0.4,¢c=0.9, ando =d’/(d}{,—1)=1.714.

FIG. 2. Plot of Ii—In h(r,t)] versus I for r =35 (triangles, r
=55 (circleg, r=75 (squares The line represents the function
h(r,t)=AZ “exp(-c&) with A=1,=-1.8c=1.65 andv
=d,/(d,—1)=1.56.

» . . ous work[12]. In the long-time limit, a slightly greater value
/\(~) over quantities corresponding to the chemitBlU- 4 _5 87 has been found], but as our simulations are re-

: : ¢
clidean distance} The value ofd,, was taken from one of  gyicted tot<1000 it is more reasonable to consider té

our previous work$12] and is in agreement with the values foctive) valued,= 2.8 that better represents the diffusive be-
repqrted_ by other authoi4,25,2§. If the conjecture in Eq.  nhayior in this time range.

(3) is right we should observe the linear behavior In 5 contrast with the results for the chemical boundary
[—Inh(¢,)]~Inc+vIn & Certainly the plots seem linear in case, now we get a poorer collapse to a single line for the
Fig. 1 except for a portion in the range of lar§avhere the  curves corresponding to different values rofThis we at-
curves deviate upwards. This is a finite size eff@teady tribute to the fact that a given Euclidean distarrcenay
analyzed in the case of the two-dimensional Sierpinski gassorrespond to many chemical distandesr depending on
ket in Ref.[23]) associated with the existence of a minimum the site and the particular aggregate we are using in the simu-
arrival time corresponding to a random walker who traveldation. The result is that, in contrast with their chemical
“ballistically” along a chemical path from the origin to the counterparts, the propagat®(r,t) [25], the mortality func-
absorbing boundary, which in turn implies a maximum avail-tion for a single trap sit¢12], and the mortality function for
able value of in the simulations%maxzflfl’div. This value  @n absorbing spherical boundahyr,t) (see Fig. 3 exhibit

is aroundz, ,~2.15 for £ =40 and, ,~2.96 for ¢ =160, a broad distribution over the different percolation aggregate

This apparently means that the reliable interval for numerica‘ealizations' As a consequence, statistical precision requires
IS app y . more substrate averaging in the case of quantities defined in
fitting is larger for€=160 but we must also take into ac-

count that the minimum value df attained in the simula- terms of Euclidean_distapce than quantities referrgd to the
_ _ 2 o _ . _ more natural <_:hem|cal d|_stance_. Anyway, proceeding as in
tions is €/t__, which is proportional tof (in our simula- ~ Sec. Il B, we linked the simulation results for=35,55,75,
tions t,,,=21000). For this reason, in order to carry out the
numerical fit, we have concatenated the simulation data for

which the plots are almost linear. The resui({,t)
=A¢ "exp(-cg’) with A=1c=09p=d/(d{—1)
=1.714, andu=—0.4 is also plotted in Fig. 1. The agree-
ment is excellent.

mm—eens,
,.-._4""1
1

Y
|
'
.
.

N(In#) (arb. units)

B. Mortality function for the two-dimensional percolation
aggregate: Euclidean distance

We also simulated the mortality functidm(r,t) in the 5
percolation aggregate when the circular absorbing boundary [in &
has an Euclidean radius The analysis of these results par- S . . . .
allels those of the preceding subsection. In Fig. 2 we have FIG. 3. Distribution of the mortality fur_lctlc_)n with a circular
plotted the simulation results for the double logarithm of thelr@Pping boundaryh(z,t), over 2000 realizations of the two-

. . ~ ~ dimensional incipient percolation aggregate. We plot the histogram
mortality  function Ii—Inh(r0)] versus g (where & b1 versugin h(zt) for t=1000,2=r = 45 (solid line), and
=r/t*®") for circular boundaries of radii=35,55,75, with  z=¢=80 (dashed ling The distribution is clearly wider for the
tmax=1000, and 2000 aggregates to perform the average. Thguclidean case than for the chemical case, although to a quite no-
anomalous diffusion coefficient for that time range was takeniceably lesser extent than for the site mortality functjd®] and
asd, = 2.8 in agreement with that obtained by us in a previ-the propagatof2,25|.

20
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where the plot is almost linear in order to perform an overallexpansion ofUy ,({). Therefore, themth moment of the

fit. Assuming the functional form of Eq3) we find that the
data can be roughly described hyr,t) =Aé “exp(—c&)

with A=1,u=-1.8¢=1.65, and v=d,,/(d,,—1)=1.56
(see Fig. 2

Ill. ORDER STATISTICS ON A
STOCHASTIC FRACTAL LATTICE

Now, with the functional form forh(z,t) found in the

preceding section, we can proceed with the evaluation of
<tJ”"N) by means of the asymptotic technique already devel-
oped for Euclidean and deterministic fractal substrates. Only

first passage time of the first out b1 diffusing particles
is equal toUy m(0), i.e.,

a(pInin\gN—1v)

m
0
th )~
i) In”‘()\ON){ In\oN
2
+L[(l+a) Tr—-i-'yz +2,uy—2FtB
2 IP(AoN) 6 vo

—2u(pu+(1+a)y)InIinngN+(1+ a),u,zlnzln)\oN}

the key steps in the calculation will be outlined. The inter- 3

. . . IN"In\gN
ested reader is referred to previous references for the details +0o| ——— | 1, (8)
[13,14,16. In3\oN

We will find it convenient in this section to write the
mortality function as follows:

h(t)=h(z,t)~a(z)t“Pexd — (to/t)P{1+ht? ..} (4)

where a(z)=Az *,B=vld% to(z) = cYez%yh,=h,z V.
The generating function of theith moment of thejth pas-
sage timely m(£) ==L (t"\)¢! %, can be written af13]

O e AL (EE ORI O T s
®

Dropping theZN term we get

Unnl =15 f:dttm‘lexp{N In[1—h(t)(1— 1)1},
©)

The point is thatfy m(¢{) andUy m(£) have the same Taylor
series expansion up to the term of ordgér !, so that(t]"y)

can also be estimated through the evaluation of this pseudo-

generating functionUy ({). Proceeding as in Refs.
[13,14,18, one gets:

U B tg 1 a(uInink —vy)
+ A a| ™ty 2y 2P
ol = _
PN 6 Y my 1'0

—2u[p+ (14 @) ylInIn\ + (1+ a) wIn?In\

()

with No=at4?=Ac* and a=m/B=mv/d% as before. No-
tice that the main term of this expression for=1 agrees
with the result given in Ref18] if we usev =d;/(d;,—1).

The calculation oft"y) for j>1 is more involved. We
begin with the identity IR1—2)=n!I=7 (—1)S(n)z/i!,
where S(n) are the Stirling numbers of the first kif@7].
Using this relation, the expansions of Tnand similar
terms in Eq.(7) in powers of 1/lagN can be found 14].
After some algebra we have

Do 1! An(a)
tm )~ M)+ 0 —, 9
< j|N> < lvN> Ina+l()\ N) n=1 n ( )
0
wherej=23,... and
a+1 Si(2)
_ __4\n
An(a)—l-i—lm\oN[( 1 (n—1)!
+ i N — 2 }+o Mo
NIN\GN— ———
pINIMAQN= 21 7 In2\oN
(10

Finally, we will quote the main term of the asymptotic
expression for the variance; \=(t? \)—(t; y)% which is
easily derived from Eq98) and (9) yielding

, d; o In*InXoN "
TINT B2 (InngN)2+ 2P mon |1
with
’7T2 i-1 2 -1 Sn(Z)
= — = — —1)yh— -
d, {6 (n21 . +2n21( n = 12
andj=1,2,... . We use theonvention that the sums are

wherea=m/B and y=0.577 215 is the Euler constant. equal to zero when the upper limit is zero. It is clear that the
Once the generating function is known, the escape timemain and first corrective terms ijz'N) are equal to those of

and their moments are calculated straightforwardly becaus(etj’,\,>2, so that only the difference between their second cor-

() is simply the coefficient o/ "1 in the Taylor series rective terms contributes to theain term of the variance.
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8t L
12} P R A
. =2 . |
9 ° . | . 6 F<a =3
- I A
6 | 4 A |
3 g . 2 4
O 0 R
¢ 2 4 6 8 10 12 0 2 4 6 8 10 12
InN InN
FIG. 4. Plot of TE[<t1YN>/€d\f\/]7§ versus IlN (N FIG. 5. Plot of R=(t;\)/(tj y—tyn) Versus er for the two-
=22,28 . ..,29 for the two-dimensional incipient percolation ag- dimensional incipient percolation aggregate wjts2 and j=3.
gregate, wheré=1/(d,—1). The circles are simulation results for The hollow filled) symbols are the simulation results for=50(¢
£=50 and the lines are the zeroth-ordleroken ling and first-order = 80), which superpose closely except for lafgeThe lines corre-

(solid line) asymptotic approximations with=0.9,0=1.714, and SPond to the zer?th-order theoretical ~prediction N(di,
=—04 —1)=73(1/n)] with df,=2.4.

For the sake of comparison with the simulation results it is>0 thatR should be linear in IN and independent of the

more convenient to consider the quotiétity)/o;  whose radius of the chemical boundafy This is confirmed in Fig.
S q Gin)7 )N 5 where this quotient is plotted versusNrfor j=2,3 and
expression is given by

€£=50,80. A good superposition of the simulation data for
(t ) ¢£=50 and{¢ =80 is observed. The simulation results are in
J—'Nz,ijlnN , (13) good agreement with the prediction of E(L5) with v
7N =d{/(d{,—1) andd=2.4.

Finally, in Fig. 6 we show the quotient between the aver-
age lifetime of thejth particle and its variancét; n)/ oj n »
. - . versus InN for the first, second, and third random walkers to
Let us now compare the theoretical predictions in Eqsarrive at the chemical boundary with=50. This is a re-

g?)’ (9).’ ar:d (13) | V;’.'th S|mulat|ct>n rﬁsults mb theb_two“— . markable figure that shows the crucial importance of the cor-
|meE15|ona percolation aggregate when an absorbing “Cifie .jye terms on the order-statistics formulas. Except for the
cular” boundary is placed either at a given chemical distanc

. - . first walker (=1) we find striking discrepancies between
z=¢ or at a given Euclidean distanee-r. the zeroth ordefmain term of the asymptotic expression in
Eq. (13) and the simulation results. We attribute these dis-
A. Absorbing boundary at a given chemical distance crepancies to th®[ (In®in N)/In N] corrective terms not con-

The first passage time of the first few random walkers oufidered in the zeroth-order asymptotic expression. Let us ex-
of a set ofN=2/,i=2,3, ... ,16 to acircular boundary of plain why. In Fig. 7 we plot the function Tin N/In™N for
chemical radiug =50 was simulated on 2000 aggregates. InSéveral values ofi andm. One sees that fin N/In N cannot
Fig. 4 lot th led simulation result /(jdfv s be neglected in comparison to 1 even for valuedNdérger

ig. 4 we plot the scaled simulation resultd ¢fy ) e than the Avogadro’s number. Therefore, it is not strange to

AR _
with 6=1/(d,,— 1), versus I for £=50 and compare them i, 5 poor agreement between the zeroth-order asymptotic
with the theoretical predictions of E¢), namely,

1+0 N

In3In N)

where d,=(7216) "2, dy=(7?6—1)" 2, d3=(7?/6
—5/4)" Y2 .

.- T T T T T
()} 7 [InNy O o -
]\ e _ 2 8
% 6 " g8°
5d’, lnInN—y—InAc# 2 0 fs
><|1—%”‘ e . (9 S o4 g g Il
" InN ~ oo
2t [
where §=1/(d{,~1). Notice that (t1,N>/€d€v)*5 depends 0 . , ) ) .
linearly on InN if v=d{/(d{,—1). Figure 4 shows that this oz 4 6 % 10D
is indeed the case.
From Eq. 9 one gets FIG. 6. Plot of(t; y)/oj 5 versus IMN for the two-dimensional
incipient percolation aggregate with=50. The circles, triangles,
(tan) -1 -1 - and squares denote the simulation resultsjfed,2 and 3, respec-
R= —’~( —) 7In N, (15) tively. The lines are the theoretical predictions wilf@=2.4 and
(Gn—tan) \A=1n) df v=d{/(d{,—1)=1.714.
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14
3 A
1.2} A
1.0} A
z s 2, 8"
0.8 u A
5 06} a2 acf
s A a a j=
£ 04} 2 LA A
02} A
0.0 N N 0 I I 1 1 1
0 5 10 15 20 25 0 2 4 6 8 10 12
Log N InN

FIG. 9. The same as Fig. 5 but for circular boundaries with
Euclidean radiug =50 (filled symbolg andr=75 (hollow sym-
bols). The lines correspond to the zeroth-order theoretical prediction
In(N)/[(dy—1)=) -1 (1/n) ] with d,,=2.8.

FIG. 7. Plot of IfINN/In™N versus the decimal logarithm IggN
for several pairsrf,m). These functions gauge the relative error of
different finite-order asymptotic approximations to the order-
statistics quantities.

expression and the simulation resultis fact, what is truly  respectively. The radii of the circular boundary are50 and
unexpected is the good agreement of the zeroth-order thep=75, and we used 2000 aggregates to perform the substrate
retical prediction with simulation results fgr=1.) Notice  average. The theoretical predictions of E¢s4) and (15)

that if we had calculated another corrective term in the[replacmg€ byr, df by d,,, & by 1/(d,,—1), and/\ by ~]
asymptotic expansiof), then the term neglected in B43)  |ead to an agreement with numerical results that is not as
would be of order IfinN/In®N, which, as shown in Fig. 7, 504 as that obtained when the chemical distance was used
v_vould likely be much smallgr than the®ln N/InN correc- (see Figs. 4 and)5although the linear behavior df andR
_tlons. Unfortunately, corrective terms of ordeFImN/InN versus InN and the superposition of the simulation data for
involve parameters, such &g [see Eq(3)], which are very o ront values of is still there. This slightly worse predic-

difficult to estimate relying only on simulation results. One € tion is in accordance with the fact, discussed in Sec. Il B,
also observes in Fig. 7 that the relative errors of the zeroth;

that the collapse of the numerical mortality function for dif-
and first-order approximations {0; ) committed by ignor-

ing terms of the form InIN/INN and IFINN/N2N, respec- ferent distances to a single curve is not so nearly perfect as

tively, will likely be small. This explains the good agreement when chemical distances are used.

between theory and simulation for lifetimes shown in Figs. 4
and 5. IV. CONCLUSIONS AND REMARKS

In this paper we studied the order statistics of the survival
B. Absorbing boundary at a given Euclidean distance times (lifetimes or exit timey of N>1 independent random

We have also simulated the order statistics of the arrivayvalkers that are put initially on a stochastic lattice at the
of N random walkers at a circular boundary of Euclideancenter of a “spherical” absorbing boundary of radimswe
radiusr. The analysis of these results parallels those of thdound the moment$t ) Of the lifetime of thejth random
preceding. The numerical results far  /r%] =¥~ and  walker of the set o in terms of an asymptotic series that
(tin)/(tj n—tyn) versus IMN are plotted in Figs. 8 and 9, decays mildly in powers of 1/M. These theoretical results
were compared with numerical simulations for the two-
dimensional incipient percolation aggregate with the absorb-
ing boundary placed either at a given chemical distance
=¢{ or at a given Euclidean distan@=r. The agreement
found was reasonable and in accordance with the large size
of the asymptotic corrective terms.

The theoretical approach relies on the knowledge of the
mortality functionh(z,t) for short times. We assumed that
the functional form of the short-time mortality function for a
stochastic lattice averaged over all realizations coincides
with that of the mortality function for Euclidean lattices and
for the class of deterministic fractal lattices whose sites are

FIG. 8. Plot of T=[(t,\)/r] % versus IN for the two- isolated by their nearest neighbors. This is the main assump-
dimensional incipient percolation aggregate, wher&l  tion of this paper and we showed that it is compatible with
=2223 ... 2% andé=1/(d,—1). The filled(hollow) circles are  our simulation results for the two-dimensional percolation
the simulation results far=50 (r =75). The broken and solid lines aggregate with Euclidean and chemical absorbing circular
are the zeroth-order and first-order asymptotic approximations, resoundaries. This allows us to describe the order statistics of
spectively, withc=1.65, v =1.56, andu= —1.85. the diffusion process on many kinds of substraiesmely,

InN
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Euclidean media, deterministic, astbchacticfractalg with on larger lattices, with longer simulation times and, of
the same approach and formulas. course, averaging over many more realizations of the lattice
A useful feature of the order-statistics description is that itthan those we have used here. This is simply too much for a
allows one to infer properties of the diffusive systédiffu-  common workstation, but we think the effort on more pow-
sion constant, number of diffusing particles, concentration okrful systems would be worthwhile: first, because of the in-
traps, effective dimension of the diffusive substrate)  terest in the percolation aggregate as a model of disordered
from the analysis of the behavior of those particles that argnedia[1,2], and, second, because simulation of the mortality
trapped first. This could be an advantage when it is impracfunction (with circular boundary is easier than that of the
tical or impOSSible to wait until the entire reaction is over. propagator and, since the asymptotic coefficients and expo-
Finally, it should be noted that our simulation results fornents of these two functions are related, estimation of these
the stochastic fractal we have studighle incipient percola- parameters for the mortality function would help to solve the

tion aggregateare insufficient to perform a completely reli- |ong-standing controversy on the exact asymptotic form of
able numerical fit to the general form of the mortality func- the propagator in fractal media.

tion h(z,t) with its dominant exponentiadnd subdominant

power-law terms simultaneously. Indeed, even to find the
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