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Survival probability and order statistics of diffusion on disordered media

L. Acedo* and S. B. Yuste†
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We investigate the first passage timet j ,N to a given chemical or Euclidean distance of the firstj of a set of
N@1 independent random walkers all initially placed on a site of a disordered medium. To solve this order-
statistics problem we assume that, for short times, the survival probability~the probability that a single random
walker is not absorbed by a hyperspherical surface during some time interval! decays for disordered media in
the same way as for Euclidean and some class of deterministic fractal lattices. This conjecture is checked by
simulation on the incipient percolation aggregate embedded in two dimensions. Arbitrary moments oft j ,N are
expressed in terms of an asymptotic series in powers of 1/lnN, which is formally identical to those found for
Euclidean and~some class of! deterministic fractal lattices. The agreement of the asymptotic expressions with
simulation results for the two-dimensional percolation aggregate is good when the boundary is defined in terms
of the chemical distance. The agreement worsens slightly when the Euclidean distance is used.
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I. INTRODUCTION

Diffusion in disordered media has been an area of int
sive research during the last two decades@1,2#. Transport in
noncrystalline, disordered materials cannot be explained
the classical theories of diffusion since anomalous behav
~relative to what happens in the Euclidean domain! are the
rule here. In particular, the mean-square displacement
random walker̂ r 2(t)& is no longer proportional to the timet
as occurs in uniform Euclidean systems of any dimens
~Fick’s Law!, but the more general anomalous diffusion la
^r 2&;2Dt2/dw holds for large times,r being the Euclidean
distance from the position of the random walker att50, dw
the anomalous diffusion exponent, andD the diffusion con-
stant. As the geometrical structure of real disordered med
very complex and varied, it is usually modeled by stocha
fractal lattices. Of these, the incipient percolation aggreg
embedded in either two or three dimensions is the m
widely used@1–5#.

Statistical problems related to a single random wal
have traditionally been the subject of more intensive resea
than those corresponding toN.1 interacting or independen
random walkers@6,7#. Of course, problems in which th
walkers interact cannot be analyzed in terms of the sin
walker theory. However, there also exist other multiparti
problems that cannot be analyzed in terms of the sin
walker theory even though the walkers are independ
These problems have begun to be the target of in-depth s
ies during the last decades@8–18#. Particular attention has
been paid to~i! the evaluation of the average number
distinct sites visited up to timet by N independent random
walkers all starting from the same origin in both Euclide
and fractal lattices@8–12#, and ~ii ! the description of the
order statistic of the diffusion processes. This is the sub
we address in this paper and can be stated as follows. A s
N independent random walkers all initially placed at a giv
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site ~the origin! of a medium start to diffuse at timet50.
Eventually, at timet1,N(z) a random walker of this se
reaches for the first time a site that is separated from
origin by the distancez. Next, a second random walke
reaches at timet2,N a site at the same distancez from the
origin, and so on@19#. Equivalently, we can understan
t j ,N(z) as the time taken~escape time or lifetime! by the j th
particle out of a set ofN@1 to escape from a ‘‘spherical’
region of radiusz centered at the starting site of diffusion
Our goal in this paper is to calculate the escape-time m
ments^t j ,N

p (z)& whenN@1 random walkers diffuse in adis-
orderedmedium.

This order-statistic problem was solved for the on
dimensional lattice in Refs.@13,14# and for some class o
deterministic fractal substrates in Ref. @14#. For
d-dimensional Euclidean lattices, the form of the first m
ment of t1,N was guessed in Ref.@15# and checked using
simulation results ford52 and d53. The full solution of
this problem for Euclidean media and for arbitraryp and j
has been obtained recently@16#. For all these media, thepth
moment of the timet j ,N spent by thej th random walker in
reaching the Euclidean distancer was given in terms of an
asymptotic series for largeN of the form

^t j ,N
p &;S r

A2D
D pdw

~ ln N!p(12dw) (
n50

`

(
m50

n

tnm

~ ln ln N!m

~ ln N!n
,

~1!

where the coefficientstnm depend onp, j , and the substrate
The question we want to answer is whether this is also t
for disordered media.

The prior knowledge of theshort-timeasymptotic expres-
sion of the survival probabilityG(z,t), which is defined as
the probability that a random walker who starts at an ori
site has not arrived at a spherical boundary of radiusz in the
time interval (0,t), was a key that allowed us to find rigo
ously the full asymptotic approximation~1! for ^t j ,N

p & for
Euclidean and some deterministic fractal media@20# in Refs.
@13,14,16#. ~Here, and henceforth, we use the term ‘‘sho
©2002 The American Physical Society10-1
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time’’ or ‘‘short-time regime’’ to mean thatz/^z2(t)&1/2

@1,̂ z2(t)& being the mean-square distancez traveled by a
single random walker in timet.! However, the use of the
asymptotic procedures of Refs.@13,14,16# for estimating
^t j ,N

p & for disorderedmedia is impeded by the fact that th
value of the short-time survival probability is unknown f
these substrates. In spite of this, in Ref.@14# it was conjec-
tured that Eq.~1! is valid for disordered media too@21#.
However, Dra¨ger and Klafter@18#, using a scaling approach
have shown recently that

^t1,N&5O@,dw
,
~ ln N!12dw

,
#, ~2!

for ordered and disorderedstructures, which differs from Eq
~1! because, in general,dw

, Þdw . Here dw
, 5dw /dmin is the

chemical diffusion exponent defined by the relation^,&
;const3t1/dw

,
,,(r ) being the chemical or topological dis

tance defined as the length of the shortest path connec
two sites on a substrate that are separated by the Eucli
distancer, anddmin is the fractal dimension of the shorte
path on the fractal:̂ ,(r )&;const3r min

d @1,2#. Notice that
dmin51 for Euclidean lattices and for the deterministic fra
tals discussed in Ref.@14#, so that, for these cases, Eqs.~1!
and~2! agree. Unfortunately, the scaling approach of Dra¨ger
and Klafter is not precise enough to lead to a fully corr
asymptotic expression of the form of Eq.~1!. This can be
seen, for example, because the asymptotic series for^t1,N&
given by these authors in Ref.@18# does not agree with the
rigorous asymptotic series reported in Refs.@13,14# for the
one-dimensional lattice.

In this paper we deal with the order statistics of the d
fusion process in disordered media following the proced
previously carried out in Euclidean media@13,14,16# and in
~some class of! deterministic fractal lattices@14,16#. There-
fore, our first step must be to propose a short-ti
asymptotic expression for the survival probability. The fun
tional form we take coincides with that obtained for Eucli
ean and renormalizable fractal lattices. Next, we apply
asymptotic methods already used for the Euclidean and
terministic fractal cases in order to obtain asymptotic exp
sions for the order-statistics moments^t j ,N

m &.
The paper organized is as follows. In Sec. II, a short-ti

asymptotic expression for the survival probability for diso
dered media is proposed. We check this conjecture in
two-dimensional incipient percolation aggregate and, on
way, estimate for this case the unknown parameters app
ing in the proposed relationship. In Sec. III we give t
asymptotic expressions of the moments oft j ,N for stochastic
fractals assuming that the survival probability for the sho
time regime is given by the expression proposed in Sec
These theoretical results are compared with simulation d
for the two-dimensional percolation aggregate. The pa
ends with some conclusions and remarks.

II. SHORT-TIME SURVIVAL PROBABILITY

From now on, we will denote byz either the chemica
distance, or the Euclidean distancer. As discussed in Sec.
we have to know the survival probabilityG(z,t), or equiva-
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lently the ~boundary! mortality functionh(z,t)512G(z,t),
for short times@i.e., for z/^z2(t)&1/2@1# in order to calculate
the escape-time moments^t j ,N

m &. This mortality function is
the probability that a given random walker starting at the s
z50 has been trapped by an absorbing boundary of radiz
before timet. In this paper we will consider media for whic
this mortality function~averaged over all realizations of th

lattice if the lattice is stochastic! grows forj[z/t1/dw
z
@1 as

a stretched exponential with power-law corrective terms,

h~z,t !5h~j!;Aj2mvexp@2cjv#$11h1j2v1•••%,
~3!

whereA,m,v,h1 are characteristic parameters of the lattic
The anomalous diffusion coefficientdw

z is replaced bydw if
the Euclidean distance is used (z5r ) and by dw

, if z5,.
There are good reasons to propose the functional form of
~3!. To start with, this relation holds for Euclidean lattice
Then, the mortality function was obtained in Refs.@14,22#
for some class of deterministic fractals by using a renorm
ization procedure that involved only boundaries contain
the nearest neighbors of the origin after successive dec
tions, and the result is in agreement with Eq.~3! too. In these
mediaz[r , m51/2, andv5dw /(dw21). ~Although the re-
sults of renormalization cannot be directly applied to a
origin and any arbitrary boundary, there are again good r
sons to suspect that the functional form is the same@23#.!
Also, a closely related quantity toh(z,t), the~site! mortality
functionht(r ) defined as the probability that a specific siter
has been visited by a single random walker before timt,
follows Eq. ~3! for the two-dimensional percolation aggre
gate@12#. Finally, one expects that the mortality function an
the propagatorP(z,t) decay for j@1 in the same way
@22,23#, and it is known thatP(z,t) decays as exp(2cjv) for
stochastic fractals, wherev5dw

z /(dw
z 21) @1–3#. We will de-

vote the remaining part of this section to verify thath(,,t)
and h(r ,t) behave as conjectured in Eq.~3! for the two-
dimensional percolation aggregate.

A. Mortality function for the two-dimensional percolation
aggregate: Chemical distance

We start by estimating the mortality functionh(,,t) when
the ‘‘circular’’ absorbing boundary is placed at the chemic
distance, from the starting site. The numerical evaluation
this quantity is performed by the Chapman-Kolmogor
method ~also called the exact enumeration method@1,2#!.
The circular boundary of absorbing traps is simulated b
set of special sites belonging to the cluster that absorbs
the probability density that enters them without giving ba
any probability to their neighbors. In the simulation we l
cate these boundaries at distances,540,100,160, and per
form three experiments of absorption fort50,1, . . . ,tmax
with tmax51000 on every aggregate built, one for ea
boundary. The resulting mortality function is averaged ov
2000 realizations of the percolation aggregate, which
generated by the Leath method@2,24#.

In Fig. 1 we plot ln@2ln h(,,t)# versus lnĵ with ĵ

[,/t1/dw
,

and dw
, 52.4. @Hereafter we will put the symbo
0-2
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SURVIVAL PROBABILITY AND ORDER STATISTICS . . . PHYSICAL REVIEW E 66, 011110 ~2002!
`(;) over quantities corresponding to the chemical~Eu-
clidean! distance.# The value ofdw

, was taken from one o
our previous works@12# and is in agreement with the value
reported by other authors@1,25,26#. If the conjecture in Eq.
~3! is right we should observe the linear behavior

@2ln h(,,t)#;ln ĉ1v̂ ln ĵ. Certainly the plots seem linear i
Fig. 1 except for a portion in the range of largeĵ where the
curves deviate upwards. This is a finite size effect~already
analyzed in the case of the two-dimensional Sierpinski g
ket in Ref.@23#! associated with the existence of a minimu
arrival time corresponding to a random walker who trav
‘‘ballistically’’ along a chemical path from the origin to th
absorbing boundary, which in turn implies a maximum ava

able value ofĵ in the simulations:ĵmax5,121/dw
,
. This value

is aroundĵmax.2.15 for ,540 andĵmax.2.96 for ,5160.
This apparently means that the reliable interval for numer
fitting is larger for ,5160 but we must also take into ac
count that the minimum value ofj attained in the simula-

tions is ,/t
max
1/dw

,

, which is proportional to, ~in our simula-
tions tmax51000). For this reason, in order to carry out t
numerical fit, we have concatenated the simulation data
which the plots are almost linear. The resulth(,,t)
5Âĵ2m̂ v̂exp(2ĉĵv̂) with Â51,ĉ50.9,v̂5dw

, /(dw
, 21)

.1.714, andm̂520.4 is also plotted in Fig. 1. The agree
ment is excellent.

B. Mortality function for the two-dimensional percolation
aggregate: Euclidean distance

We also simulated the mortality functionh(r ,t) in the
percolation aggregate when the circular absorbing bound
has an Euclidean radiusr. The analysis of these results pa
allels those of the preceding subsection. In Fig. 2 we h
plotted the simulation results for the double logarithm of t
mortality function ln@2ln h(r,t)# versus lnj̃ ~where j̃

5r /t1/dw
) for circular boundaries of radiir 535,55,75, with

tmax51000, and 2000 aggregates to perform the average.
anomalous diffusion coefficient for that time range was tak
asdw52.8 in agreement with that obtained by us in a pre

FIG. 1. Plot of ln@2ln h(,,t)# versus lnĵ for the two-dimensional
incipient percolation cluster. The radii of the absorbing ‘‘circula
boundaries are,540 ~triangles!, ,5100 ~circles!, and ,5160

~squares!. The line represents the functionh(,,t)5Âĵ2m̂ v̂exp

(2ĉĵv̂) with Â51, m̂520.4, ĉ50.9, andv̂5dw
, /(dw

, 21)51.714.
01111
s-

s

-

l

or

ry

e

he
n
-

ous work@12#. In the long-time limit, a slightly greater valu
dw52.87 has been found@1#, but as our simulations are re
stricted tot<1000 it is more reasonable to consider the~ef-
fective! valuedw52.8 that better represents the diffusive b
havior in this time range.

In contrast with the results for the chemical bounda
case, now we get a poorer collapse to a single line for
curves corresponding to different values ofr. This we at-
tribute to the fact that a given Euclidean distancer may
correspond to many chemical distances,>r depending on
the site and the particular aggregate we are using in the s
lation. The result is that, in contrast with their chemic
counterparts, the propagator,P(r ,t) @25#, the mortality func-
tion for a single trap site@12#, and the mortality function for
an absorbing spherical boundary,h(r ,t) ~see Fig. 3!, exhibit
a broad distribution over the different percolation aggreg
realizations. As a consequence, statistical precision requ
more substrate averaging in the case of quantities define
terms of Euclidean distance than quantities referred to
more natural chemical distance. Anyway, proceeding as
Sec. II B, we linked the simulation results forr 535,55,75,

FIG. 2. Plot of ln@2ln h(r,t)# versus lnj̃ for r 535 ~triangles!, r
555 ~circles!, r 575 ~squares!. The line represents the functio

h(r ,t)5Ãj̃2m̃ ṽexp(2c̃j̃ṽ) with Ã51,m̃521.8,c̃51.65, and ṽ
5dw /(dw21)51.56.

FIG. 3. Distribution of the mortality function with a circula
trapping boundaryh(z,t), over 2000 realizations of the two
dimensional incipient percolation aggregate. We plot the histog
N @ ln h(z,t)# versusu ln h(z,t)u for t51000,z5r 545 ~solid line!, and
z5,580 ~dashed line!. The distribution is clearly wider for the
Euclidean case than for the chemical case, although to a quite
ticeably lesser extent than for the site mortality function@12# and
the propagator@2,25#.
0-3
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L. ACEDO AND S. B. YUSTE PHYSICAL REVIEW E66, 011110 ~2002!
where the plot is almost linear in order to perform an ove
fit. Assuming the functional form of Eq.~3! we find that the
data can be roughly described byh(r ,t)5Ãj̃2m̃ ṽexp(2c̃j̃ṽ)
with Ã51,m̃521.8,c̃51.65, and ṽ[dw /(dw21).1.56
~see Fig. 2!.

III. ORDER STATISTICS ON A
STOCHASTIC FRACTAL LATTICE

Now, with the functional form forh(z,t) found in the
preceding section, we can proceed with the evaluation
^t j ,N

m & by means of the asymptotic technique already dev
oped for Euclidean and deterministic fractal substrates. O
the key steps in the calculation will be outlined. The int
ested reader is referred to previous references for the de
@13,14,16#.

We will find it convenient in this section to write th
mortality function as follows:

h~ t ![h~z,t !;a~z!tmbexp@2~ t0 /t !b#$11h̄1tb
•••% ~4!

where a(z)5Az2mv,b5v/dw
z ,t0(z)5c1/bzdw

z
yh̄15h1z2v.

The generating function of themth moment of thej th pas-
sage time,UN,m(z)5( j 51

N ^t j ,N
m &z j 21, can be written as@13#

UN,m~z!5
m

12zE0

`

dt tm21$@12h~ t !1h~ t !z#N2zN%.

~5!

Dropping thezN term we get

UN,m~z![
m

12zE0

`

dttm21exp$N ln@12h~ t !~12z!#%.

~6!

The point is thatUN,m(z) andUN,m(z) have the same Taylo
series expansion up to the term of orderzN21, so that̂ t j ,N

m &
can also be estimated through the evaluation of this pse
generating function UN,m(z). Proceeding as in Refs
@13,14,16#, one gets:

UN,m~z!5
t0
m

12z

1

lnal
H 11

a~m ln lnl2g!

lnl

1
a

2 ln2l
F ~11a!S p2

6
1g2D12mg22h̄1t0

b

22m@m1~11a!g# ln lnl1~11a!m2ln2lnlG
1OS ln3lnl

ln3l
D J , ~7!

wherea[m/b andg.0.577 215 is the Euler constant.
Once the generating function is known, the escape tim

and their moments are calculated straightforwardly beca
^t j ,N

m & is simply the coefficient ofzj 21 in the Taylor series
01111
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expansion ofUN,m(z). Therefore, themth moment of the
first passage time of the first out ofN@1 diffusing particles
is equal toUN,m(0), i.e.,

^t1,N
m &;

t0
m

lna~l0N!
H 11

a~m ln lnl0N2g!

lnl0N

1
a

2 ln2~l0N!
F ~11a!S p2

6
1g2D12mg22h̄1t0

b

22m~m1~11a!g!ln lnl0N1~11a!m2ln2lnl0NG
1OS ln3lnl0N

ln3l0N
D J , ~8!

with l05at0
mb5Acm and a5m/b5mv/dw

z as before. No-
tice that the main term of this expression form51 agrees
with the result given in Ref.@18# if we usev5dw

z /(dw
z 21).

The calculation of̂ t j ,N
m & for j .1 is more involved. We

begin with the identity lnn(12z)5n!(i5n
` (21)iSi(n)zi/i!,

whereSi(n) are the Stirling numbers of the first kind@27#.
Using this relation, the expansions of 1/lnal and similar
terms in Eq.~7! in powers of 1/lnl0N can be found@14#.
After some algebra we have

^t j ,N
m &;^t1,N

m &1
t0
ma

lna11~l0N!
(
n51

j 21
Dn~a!

n
, ~9!

where j 52,3, . . . and

Dn~a!511
a11

lnl0N F ~21!n
Sn~2!

~n21!!

1m ln lnl0N2
m

a11
2gG1OS ln2lnl0N

ln2l0N
D .

~10!

Finally, we will quote the main term of the asymptot
expression for the variance,s j ,N

2 5^t j ,N
2 &2^t j ,N&2, which is

easily derived from Eqs.~8! and ~9! yielding

s j ,N
2 5

t0
2

b2

dj

~ lnl0N!212/b F11OS ln3lnl0N

lnl0N D G , ~11!

with

dj5Fp2

6
2S (

n51

j 21
1

nD 2

12(
n51

j 21

~21!n
Sn~2!

n! G , ~12!

and j 51,2, . . . . We use theconvention that the sums ar
equal to zero when the upper limit is zero. It is clear that
main and first corrective terms of^t j ,N

2 & are equal to those o
^t j ,N&2, so that only the difference between their second c
rective terms contributes to themain term of the variance.
0-4
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For the sake of comparison with the simulation results i
more convenient to consider the quotient^t j ,N&/s j ,N whose
expression is given by

^t j ,N&
s j ,N

5bdj ln NF11OS ln3ln N

ln N D G , ~13!

where d15(p2/6)21/2, d25(p2/621)21/2, d35(p2/6
25/4)21/2, . . . .

Let us now compare the theoretical predictions in E
~8!, ~9!, and ~13! with simulation results in the two
dimensional percolation aggregate when an absorbing ‘‘
cular’’ boundary is placed either at a given chemical dista
z5, or at a given Euclidean distancez5r .

A. Absorbing boundary at a given chemical distance

The first passage time of the first few random walkers
of a set ofN52i ,i 52,3, . . . ,16 to acircular boundary of
chemical radius,550 was simulated on 2000 aggregates.

Fig. 4 we plot the scaled simulation results of@^t1,N&/,dw
,
#2d,

with d51/(dw
, 21), versus lnN for ,550 and compare them

with the theoretical predictions of Eq.~8!, namely,

S ^t1,N&

,dw
, D 2d

;S ln N

ĉ
D (ddw

, / v̂)

3H 12
ddw

,

v̂

m̂ ln ln N2g2 lnÂĉm̂

ln N J , ~14!

where d51/(dw
, 21). Notice that (̂t1,N&/,dw

,
)2d depends

linearly on lnN if v̂5dw
, /(dw

, 21). Figure 4 shows that this
is indeed the case.

From Eq. 9 one gets

R[
^t1,N&

^t j ,N2t1,N&
;S (

n51

j 21
1

nD 21
v̂

dw
,

ln N, ~15!

FIG. 4. Plot of T[@^t1,N&/,dw
,

#2d versus lnN (N
522,23, . . . ,216) for the two-dimensional incipient percolation ag
gregate, whered51/(dw

, 21). The circles are simulation results fo
,550 and the lines are the zeroth-order~broken line! and first-order

~solid line! asymptotic approximations withĉ50.9, v̂51.714, and

m̂520.4.
01111
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so thatR should be linear in lnN and independent of the
radius of the chemical boundary,. This is confirmed in Fig.
5 where this quotient is plotted versus lnN for j 52,3 and
,550,80. A good superposition of the simulation data
,550 and,580 is observed. The simulation results are
good agreement with the prediction of Eq.~15! with v̂
5dw

, /(dw
, 21) anddw

, 52.4.
Finally, in Fig. 6 we show the quotient between the av

age lifetime of thej th particle and its variance,^t j ,N&/s j ,N ,
versus lnN for the first, second, and third random walkers
arrive at the chemical boundary with,550. This is a re-
markable figure that shows the crucial importance of the c
rective terms on the order-statistics formulas. Except for
first walker (j 51) we find striking discrepancies betwee
the zeroth order~main term! of the asymptotic expression i
Eq. ~13! and the simulation results. We attribute these d
crepancies to theO@(ln3ln N)/ln N# corrective terms not con
sidered in the zeroth-order asymptotic expression. Let us
plain why. In Fig. 7 we plot the function lnnln N/lnmN for
several values ofn andm. One sees that ln3ln N/ln N cannot
be neglected in comparison to 1 even for values ofN larger
than the Avogadro’s number. Therefore, it is not strange
find a poor agreement between the zeroth-order asymp

FIG. 5. Plot ofR[^t1,N&/^t j ,N2t1,N& versus lnN for the two-
dimensional incipient percolation aggregate withj 52 and j 53.
The hollow ~filled! symbols are the simulation results for,550(,
580), which superpose closely except for largeN. The lines corre-
spond to the zeroth-order theoretical prediction ln(N)/@(dw

,

21)(n51
j21(1/n)# with dw

, 52.4.

FIG. 6. Plot of^t j ,N&/s j ,N versus lnN for the two-dimensional
incipient percolation aggregate with,550. The circles, triangles
and squares denote the simulation results forj 51,2 and 3, respec-
tively. The lines are the theoretical predictions withdw

, 52.4 and

v̂5dw
, /(dw

, 21)51.714.
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expression and the simulation results.~In fact, what is truly
unexpected is the good agreement of the zeroth-order t
retical prediction with simulation results forj 51.! Notice
that if we had calculated another corrective term in
asymptotic expansion~7!, then the term neglected in Eq.~13!
would be of order ln4ln N/ln2N, which, as shown in Fig. 7
would likely be much smaller than the ln3ln N/lnN correc-
tions. Unfortunately, corrective terms of order ln3ln N/lnN
involve parameters, such ash1 @see Eq.~3!#, which are very
difficult to estimate relying only on simulation results. On
also observes in Fig. 7 that the relative errors of the zero
and first-order approximations tôt j ,N& committed by ignor-
ing terms of the form ln lnN/lnN and ln2lnN/ln2N, respec-
tively, will likely be small. This explains the good agreeme
between theory and simulation for lifetimes shown in Figs
and 5.

B. Absorbing boundary at a given Euclidean distance

We have also simulated the order statistics of the arr
of N random walkers at a circular boundary of Euclide
radiusr. The analysis of these results parallels those of
preceding. The numerical results for@ t1,N /r dw#21/(dw21) and
^t1,N&/^t j ,N2t1,N& versus lnN are plotted in Figs. 8 and 9

FIG. 7. Plot of lnnlnN/lnmN versus the decimal logarithm log10N
for several pairs (n,m). These functions gauge the relative error
different finite-order asymptotic approximations to the ord
statistics quantities.

FIG. 8. Plot of T5@^t1,N&/r dw#2d versus lnN for the two-
dimensional incipient percolation aggregate, whereN
522,23, . . . ,216 andd51/(dw21). The filled~hollow! circles are
the simulation results forr 550 (r 575). The broken and solid line
are the zeroth-order and first-order asymptotic approximations

spectively, withc̃51.65, ṽ51.56, andm̃521.85.
01111
o-

e

h-

t
4

l

e

respectively. The radii of the circular boundary arer 550 and
r 575, and we used 2000 aggregates to perform the subs
average. The theoretical predictions of Eqs.~14! and ~15!
@replacing, by r, dw

, by dw , d by 1/(dw21), and` by ;#
lead to an agreement with numerical results that is not
good as that obtained when the chemical distance was
~see Figs. 4 and 5!, although the linear behavior ofT andR
versus lnN and the superposition of the simulation data f
different values ofr is still there. This slightly worse predic
tion is in accordance with the fact, discussed in Sec. II
that the collapse of the numerical mortality function for d
ferent distancesr to a single curve is not so nearly perfect
when chemical distances are used.

IV. CONCLUSIONS AND REMARKS

In this paper we studied the order statistics of the survi
times ~lifetimes or exit times! of N@1 independent random
walkers that are put initially on a stochastic lattice at t
center of a ‘‘spherical’’ absorbing boundary of radiusz. We
found the momentŝt j ,N

m & of the lifetime of thej th random
walker of the set ofN in terms of an asymptotic series th
decays mildly in powers of 1/lnN. These theoretical result
were compared with numerical simulations for the tw
dimensional incipient percolation aggregate with the abso
ing boundary placed either at a given chemical distancz
5, or at a given Euclidean distancez5r . The agreement
found was reasonable and in accordance with the large
of the asymptotic corrective terms.

The theoretical approach relies on the knowledge of
mortality functionh(z,t) for short times. We assumed tha
the functional form of the short-time mortality function for
stochastic lattice averaged over all realizations coinci
with that of the mortality function for Euclidean lattices an
for the class of deterministic fractal lattices whose sites
isolated by their nearest neighbors. This is the main assu
tion of this paper and we showed that it is compatible w
our simulation results for the two-dimensional percolati
aggregate with Euclidean and chemical absorbing circu
boundaries. This allows us to describe the order statistic
the diffusion process on many kinds of substrates~namely,

-

e-

FIG. 9. The same as Fig. 5 but for circular boundaries w
Euclidean radiusr 550 ~filled symbols! and r 575 ~hollow sym-
bols!. The lines correspond to the zeroth-order theoretical predic
ln(N)/@(dw21)(n51

j21(1/n)# with dw52.8.
0-6



t

o

ar
a
.
o

i-
c-

th

tru
e

o
,
n

of
tice
or a
w-
in-
ered
lity

po-
ese
he
of

y
.

-
of

SURVIVAL PROBABILITY AND ORDER STATISTICS . . . PHYSICAL REVIEW E 66, 011110 ~2002!
Euclidean media, deterministic, andstochacticfractals! with
the same approach and formulas.

A useful feature of the order-statistics description is tha
allows one to infer properties of the diffusive system~diffu-
sion constant, number of diffusing particles, concentration
traps, effective dimension of the diffusive substrate, . . . !
from the analysis of the behavior of those particles that
trapped first. This could be an advantage when it is impr
tical or impossible to wait until the entire reaction is over

Finally, it should be noted that our simulation results f
the stochastic fractal we have studied~the incipient percola-
tion aggregate! are insufficient to perform a completely rel
able numerical fit to the general form of the mortality fun
tion h(z,t) with its dominant exponentialand subdominant
power-law terms simultaneously. Indeed, even to find
true exponent valuev of thedominantterm for the propaga-
tor is not at all easy as past controversies about that
value reveal. Moreover, the value of a hypothetical pow
law subdominant term@equivalent to the termj2mv of Eq.
~3!# is still a matter of discussion@22,23,28#. Hence, one
must expect that to find a completely reliable description
the short-time mortality function will be similarly difficult
and this task will therefore require more detailed simulatio
.
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ts
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01111
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s

on larger lattices, with longer simulation times and,
course, averaging over many more realizations of the lat
than those we have used here. This is simply too much f
common workstation, but we think the effort on more po
erful systems would be worthwhile: first, because of the
terest in the percolation aggregate as a model of disord
media@1,2#, and, second, because simulation of the morta
function ~with circular boundary! is easier than that of the
propagator and, since the asymptotic coefficients and ex
nents of these two functions are related, estimation of th
parameters for the mortality function would help to solve t
long-standing controversy on the exact asymptotic form
the propagator in fractal media.
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